GANNs: A New Theory of Representation for Nonlinear Bounded Operators

William Guss
Machine Learning at Berkeley
April 22, 2016
Introduction: What’s up with continuous data?

- **All** of the data we deal with is discrete thanks to Turing.
- But, most of it models a continuous process.
- **Examples**
 - Audio: We take $> 100k$ samples of something we could describe with $f : \mathbb{R} \rightarrow \mathbb{R}$! Trick Question: Which is easier to use? (a) $\nu \in \mathbb{R}^{100000}$ or (b) f.
 - Images: We take $100k \times 100k$ samples of something we could describe with $f : \mathbb{R}^2 \rightarrow \mathbb{R}$.
- Why do we use discrete data? No computer known can really store f. End of story.
Introduction: Abusing continuity

- f can’t be *that* bad. Can it?
- If f is smooth it’s easy to draw:

![Graph of $f(x) = x^2$](image)

- I can even name f most of the time: $f : x \mapsto x^2$ or even super precisely $g : x \mapsto \sum_{i}^{\infty} a_n x^n$.
- Moral: Smooth functions are mostly very manageable.
Introduction: Abusing continuity

- So why do we do this:

- To classify this:

 frequency: **20kHz**

 sampling rate: **44.1kHz**
Artificial Neural Networks

Definition

We say $\mathcal{N} : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is a feed-forward neural network if for an input vector \mathbf{x},

\[
\mathcal{N} : \sigma^{(l+1)}_j = g \left(\sum_{i \in Z^{(l)}} w^{(l)}_{ij} \sigma^{(l)}_i + \beta^{(l)} \right)
\]

(1)

\[
\sigma^{(0)}_i = x_i,
\]

where $1 \leq l \leq L - 1$. Furthermore we say $\{\mathcal{N}\}$ is the set of all neural networks.
Operator Neural Networks

Let’s get rid of \mathbb{R}^{100000} and use f.

Definition

We call $\mathcal{O} : L^p(X) \rightarrow L^1(Y)$ an operator neural network if,

$$
\mathcal{O} : \sigma^{(l+1)}(j) = g \left(\int_{R^{(l)}} \sigma^{(l)}(i)w^{(l)}(i,j) \, di \right)
$$

$$
\sigma^{(0)}(j) = f(j).
$$

Furthermore let $\{\mathcal{O}\}$ denote the set of all functional neural networks.

Well that was easy. In fact $\{\mathcal{O}\} \supset \{\mathcal{N}\}$

These definitions looks really similar? Is there some more general category or structure containing them.
Generalized Artificial Neural Networks

Definition

If A, B are (possibly distinct) Banach spaces over a field \mathbb{F}, we say $\mathcal{G} : A \to B$ is a generalized neural network if and only if

$$
\mathcal{G} : \sigma^{(l+1)} = g \left(T_l \left[\sigma^{(l)} \right] + \beta^{(l)} \right)
$$

$$
\sigma^{(0)} = \xi
$$

for some input $\xi \in A$, and a linear form T_l.

Claim: "Neural networks" are powerful because they can move bumps anywhere!

How? T_l is a linear form. It can move $\sigma^{(l)}$ anywhere, and g is a bump of some sort.
Moving bumps around

- The sigmoid function

\[g = \frac{1}{1 + e^{-x}} \]

is a bump, that we can move around with weights!
T_l as the layer type.

Definition

We suggest several classes of T_l as follows

- T_l is said to be σ operational if and only if

\[
T_l = \sigma : L^p(R^{(l)}) \to L^1(R^{(l+1)})
\]

\[
\sigma \mapsto \int_{R^{(l)}} \sigma(i) w^{(l)}(i, j) \, di.
\]

(5)

- T_l is said to be n discrete if and only if

\[
T_l = n : \mathbb{R}^n \to \mathbb{R}^m
\]

\[
\bar{\sigma} \mapsto \sum_{j} \bar{\sigma}_j \sum_{i} \sigma_i w^{(l)}_{ij}
\]

(6)

where $\bar{\sigma}_j$ denotes the j^{th} basis vector in \mathbb{R}^m.
Definition

- \(T_l \) is said to be \(n_1 \) transitional if and only if
 \[
 T_l = n_1 : \mathbb{R}^n \rightarrow L^q(\mathbb{R}^{(l+1)})
 \]
 \[
 \vec{\sigma} \mapsto \sum_{i}^n \sigma_i w_i^{(l)}(j).
 \]
 \(\quad (7) \)

- \(T_l \) is said to be \(n_2 \) transitional if and only if
 \[
 T_l = n_2 : L^p(\mathbb{R}^{(l)}) \rightarrow \mathbb{R}^m
 \]
 \[
 \sigma(i) \mapsto \sum_{j}^m \vec{e}_j \int_{\mathbb{R}^{(l)}} \sigma(i) w_j^{(l)}(i) \, di
 \]
 \(\quad (8) \)
Neural networks as diagrams!

This generalization is nice from a creative standpoint. I can come up with new sorts of "classifiers" on the fly. **Examples:**

- A three layer neural network is just
 \[\mathcal{N}_3 : \mathbb{R}^{10000} \xrightarrow{g^\circ n} \mathbb{R}^{30} \xrightarrow{g^\circ n} \mathbb{R}^3. \] (9)

- A three layer operator network is simply
 \[\mathcal{O}_3 : L^p(R) \xrightarrow{g^\circ o} L^1(R) \xrightarrow{g^\circ o} C(R). \] (10)

- We can even classify functions!
 \[\mathcal{C} : L^p(R) \xrightarrow{g^\circ o} L^1(R) \xrightarrow{g^\circ o} \ldots \xrightarrow{g^\circ o} L^1(R) \xrightarrow{g^\circ n^2} \mathbb{R}^n. \] (11)
Results: Did abusing continuity help?

For every layer a has weights

$$w^{(l)}(i, j) = \sum_{b} \sum_{a} k_{a,b}^l i^a j^b.$$ \hspace{1cm} (12)

Theorem

Let C be a GANN with only one n_2 transitional layer with $O(1)$ weight polynomial. If a continuous function, say $f(t)$ is sampled uniformly from $t = 0$, to $t = N$, such that $x_n = f(n)$, and if G has an input function which is piecewise linear with $O(N^2)$ weights.

$$\xi = (x_{n+1} - x_n) (z - n) + x_n$$ \hspace{1cm} (13)

for $n \leq z < n + 1$, then there exist some discrete neural network \mathcal{N} such that $G(\xi) = \mathcal{N}(x)$.
Results: Did abusing continuity help?

WHAT?!?!? How did C reduce the number of weights from $O(N^2)$ to $O(1)$?

- The infinite dimensional versions of N, in particular O and C are invariant to input quality. Takes the idea behind Convnets to an extreme!
- This is easy to see.
Results: Representation Theory

How good are Continuous Classifier Networks, \(\{C\} \) as algorithms?

Theorem

Let \(X \) be a compact Hausdorff space. For every \(\epsilon > 0 \) and every continuous bounded functional on \(L^q(X) \), say \(f \), there exists a two layer continuous classifier

\[
C : L^q(x) \xrightarrow{g \circ n_2} \mathbb{R}^m \xrightarrow{n} \mathbb{R}^n
\]

such that

\[
\| f - C \| < \epsilon.
\]
How good are Operator Networks and GANNs as algorithms? They should be able to approximate the important operators, eg. **Fourier Transform, Laplace Transform, Derivation**, etc.

Theorem

Given a operator neural network O then some layer $l \in O$, then let $K : C(R^{(l)}) \rightarrow C(R^{(l)})$ be a bounded linear operator. If we denote the operation of layer l on layer $l - 1$ as $\sigma^{(l+1)} = g \left(\Sigma_{l+1} \sigma^{(l)} \right)$, then for every $\epsilon > 0$, there exists a weight polynomial $w^{(l)}(i,j)$ such that the supremum norm over $R^{(l)}$

$$\left\| K \sigma^{(l)} - \Sigma_{l+1} \sigma^{(l)} \right\|_{\infty} < \epsilon \quad (16)$$

Proof.

See paper. Nice!
We want to show the following better theorem.

Theorem

Given a operator neural network \mathcal{O} then some layer $l \in \mathcal{O}$, let $K : C(R^{(l)}) \rightarrow C(R^{(l)})$ be a bounded **continuous** operator. If we denote the operation of layer l on layer $l-1$ as $\sigma^{(l+1)} = g\left(\Sigma_{l+1} \sigma^{(l)}\right)$, then for every $\epsilon > 0$, there exists a weight polynomial $w^{(l)}(i, j)$ such that the supremum norm over $R^{(l)}$

$$\left\| K \sigma^{(l)} - \Sigma_{l+1} \sigma^{(l)} \right\|_\infty < \epsilon$$ \hspace{1cm} (17)

But how? **Dirac Spikes!**
Results: Stronger Representation Theory

Proof.
Proof.

- Fix $\epsilon > 0$. Given $K: \xi \mapsto f$, let $K_j: \xi \mapsto f(j)$ be a functional on L^q.
Results: Stronger Representation Theory

Proof.

- Fix $\epsilon > 0$. Given $K : \xi \mapsto f$, let $K_j : \xi \mapsto f(j)$ be a functional on L^q.
- We can find a $C_j : L^q(R) \xrightarrow{g_{\text{on}2}} \mathbb{R}^m(j) \xrightarrow{n} \mathbb{R}^1$ so that for all ξ,
 \[|C_j(\xi) - K_j(\xi)| = |C_j(\xi) - f(j)| < \epsilon/2. \] (18)
Results: Stronger Representation Theory

Proof.

We know that

\[C_j(\xi) = \sum_{k=1}^{m(j)} a_{jk} g \left(\int_R \xi(i) w_{kj}(i) \, d\mu(i) \right) \] \hspace{1cm} (18)
Results: Stronger Representation Theory

Proof.

- We wish to turn C_j into a two layer O. Let,

$$w^{(0)}(i, \ell) = \begin{cases} w_{kj}(i), & \text{if } \ell = j + k, \ k \in 1, \ldots, m(j) \\ 0 & \text{otherwise} \end{cases}$$
Results: Stronger Representation Theory

Proof.

Then

\[C_j(\xi) = \sum_{k=1}^{m} a_{jk} g \circ o[\xi](k + j) \]

(18)
Results: Stronger Representation Theory

Proof.

Then

\[C_j(\xi) = \sum_{k=1}^{m} a_{jk} g \circ o[\xi](k + j) \] \hspace{1cm} (18)

How do we turn this finite sum into an integral? Dirac time!
Proof.

We define a dirac spike as follows for every \(n \):

\[
\delta_{nkj}(\ell) = cn \exp(-bn^2|\ell - (j + k)|^2)
\]

(18)

where \(c, b \) are set so that \(\int_\mathbb{R} \delta_{nk} = 1 \)
Proof.

Now let the second weight function be:

\[w_n^{(1)}(\ell, j) = \sum_{k=1}^{m} a_{jk} \delta_{nkj}(\ell) \]

(18)
Proof.

- Putting everything together, for every n let
 \[O_n : L^p(R) \to L^1([0, 1]) \]

 \[O_n : \xi \mapsto \int_R w^{(1)}(\ell, j) \circ [\xi](\ell) \, d\mu(\ell). \]

 Clearly $O_n \to \sum_{k=1}^m a_{jk} g \circ \circ [\xi](k + j)$
Proof.

Therefore for every $\epsilon > 0$ there exists an N such that for all $n > N$, for all ξ, and for all j,

$$|O_n[\xi](j) - C_j[\xi]| \leq \|O_n[\cdot](j) - C_j[\cdot]\| < \epsilon/2. \quad (18)$$
Proof.

- Therefore for every $\epsilon > 0$ there exists an N such that for all $n > N$, for all ξ, and for all j,

$$|O_n[\xi](j) - C_j[\xi]| \leq \|O_n[\cdot](j) - C_j[\cdot]\| < \epsilon/2. \quad (18)$$

- Recall that for every j, $\|K_j - C_j\| < \epsilon/2$.
By the triangle inequality we have that for all j

$$\|K_j - O_n(k)\| = \|K_j - O_n(j) + C_j - C_j\|$$

$$\leq \|K_j - C_j\| + \|O_n(j) - C_k\| < \epsilon.$$
Results: Stronger Representation Theory

Proof.

- By the triangle inequality we have that for all j

 \[
 \|K_j - O_n(k)\| = \|K_j - O_n(j) + C_j - C_j\| \\
 \leq \|K_j - C_j\| + \|O_n(j) - C_k\| < \epsilon. \tag{18}
 \]

- Therefore $\|K - O\| < \epsilon$